
Techno-Science Research Journal V13 (1) (2025) P 75-83

Content list available at ITC

Techno-Science Research Journal
Journal Homepage: http://techno-srj.itc.edu.kh/

75

CNN-based Reinforcement Learning with Policy Gradient for Khmer Chess

Both Chan 1*, Dona Valy 2, Phutphalla Kong 2

1 Graduate student, Master program of Computer Science Engineering, Graduate school, Institute of

Technology of Cambodia
2 Research and Innovation Center, Institute of Technology of Cambodia, Russia Federation Blvd., P.O. Box 86,

 Phnom Penh, Cambodia

Received: 20 August 2024; Revised: 02 September 2024; Accepted: 10 September 2024; Available online: 30 April 2025

Abstract: Artificial intelligence, fueled by machine learning and deep learning techniques, is revolutionizing various domains.

Reinforcement learning (RL) stands out as a potent method for training agents to navigate complex environments and make informed

decisions. Our focus is on applying RL techniques, specifically Convolutional Neural Networks (CNNs) combined with policy gradient

methods, to enhance the gameplay experience of Khmer chess. Our goal is to surpass the performance of traditional chess engines.

The system employs deep neural networks to train AI agents, enabling self-play iterations for strategy refinement. Specifically, we

utilize RL technology to iteratively enhance game strategies based on self-matching results, ultimately improving the system's chess

proficiency. Our approach entails developing a CNN-based RL system tailored for Khmer chess, encompassing strategies, value

evaluation mechanisms, and rule adaptations specific to the game. We utilize deep neural networks to facilitate agent training through

self-play iterations, leveraging RL techniques for continual strategy refinement. To enhance training efficiency, we introduce a

segmentation method for Khmer chess stages, optimizing the neural network's learning process by mapping game situations to optimal

actions based on cumulative rewards. Furthermore, we integrate RL principles to guide action selection towards maximizing reward

values, employing Deep Q-Learning with policy gradient for optimal decision-making. With the experimental validation demonstrates

the efficacy of our CNN-based RL system in enhancing Khmer chess gameplay. The system exhibits self-improvement, adaptability,

and human-like gameplay characteristics, enriching player experience and entertainment value. Moreover, the proposed approach

showcases improved training efficiency compared to conventional RL-based chess systems, highlighting its efficacy and scalability for

AI-driven game enhancements.

Keywords: Reinforcement learning(RL), Policy gradient methods, Self-play iterations, Human-like gameplay characteristics

1. INTRODUCTION1

Reinforcement learning (RL) has emerged as a pivotal

area of focus in the fields of artificial intelligence (AI) and

machine learning, particularly in the context of chess and

other complex strategic games. This niche within AI is

dedicated to creating intelligent agents capable of making

sequential decisions in ever-changing environments. Unlike

traditional supervised learning, which relies on labeled data

to train models, RL agents learn by continuously interacting

with their surroundings, receiving feedback in the form of

rewards or penalties. This trial-and-error learning process

enables the development of sophisticated strategies that

adapt to the dynamic nature of real-world scenarios. Chess,

* Corresponding author: Chan Both

E-mail: chanboth180720@gmail.com ; Tel: +855-10 431 168

with its intricate decision-making processes and strategic

depth, serves as an excellent platform for RL, providing an

ideal environment for testing and refining RL algorithms.

The conceptual origins of RL can be traced back to the

field of behavioral psychology, particularly the exploration

of learning through trial and error. Pioneering work in this

area laid the theoretical foundations of RL, which were

further developed in the mid-20th century with the

formulation of dynamic programming by Richard Bellman.

Bellman's work introduced key concepts such as the

Bellman equation, which remains fundamental to modern

RL algorithms. However, it wasn't until the advent of

powerful computational resources and advanced algorithms

that RL began to garner widespread attention within the

domain of machine learning.

Chess, renowned for its strategic depth and historical

significance, presents a formidable challenge for AI due to

mailto:chanboth180720@gmail.com

 Chan et al./Techno-Science Research Journal V13 (1) (2025) P 75-83

76

its complexity. The game’s vast branching factor, where

each move leads to a multitude of possible future positions,

makes it difficult for traditional chess engines to navigate the

game tree efficiently. While conventional chess engines

leveraging rule-based systems and minimax algorithms have

achieved notable success, they encounter significant

difficulties in complex endgame scenarios where precise

calculation and long-term planning are essential.

The primary aim of this research is to pioneer self-play

mechanisms in Khmer chess, ultimately striving towards the

attainment of superhuman-level play. By enabling agents to

learn and refine their strategies through iterative gameplay

against themselves, the goal is to develop algorithms capable

of surpassing human performance thresholds in Khmer

chess.

Several pivotal works lay the foundation for this study.

Notably, the AlphaZero algorithm has demonstrated the

power of general reinforcement learning algorithms in

mastering complex games like chess, shogi, and Go through

self-play [5]. AlphaZero achieved superhuman performance

without game-specific knowledge, utilizing deep neural

networks and a Monte Carlo tree search (MCTS) instead of

handcrafted rules. Another study applied deep

reinforcement learning to finite state single-player games

like Solitaire Chess [6], showcasing the efficiency and

accuracy of RL models in solving puzzles by exploring

fewer possible moves compared to brute force methods.

Further advancements in the field include the

development of adaptable chess environments for detecting

human-understandable concepts learned by RL agents [9].

This research highlights the importance of explainable AI

and provides tools for research groups with limited

computational resources. The use of policy gradient methods

has also been explored for training neural networks [12,10],

allowing for learning from a system of rewards and

imposing structural constraints without complex

architectures.

Recent studies have expanded the application of RL to

non-traditional board games and culturally significant

games, demonstrating the adaptability of RL across diverse

gaming contexts. For example,[13] explored RL applications

in Mancala, a traditional African game with deep cultural

roots, illustrating how RL can adapt to unique strategies and

rules inherent in non-Western games.[16] focused on RL in

Xiangqi (Chinese Chess), a game known for its complexity

and larger board size, revealing how RL can tackle culturally

specific strategic challenges. Similarly,[17] investigated the

use of deep RL in Hnefatafl, a historical Viking board game,

showing that RL could handle asymmetric gameplay and

ancient strategic elements. Moreover,[14] applied RL to

Shogi (Japanese Chess), combining Policy Gradient methods

with neural Monte Carlo Tree Search (MCTS) to enhance

decision-making in a game with intricate piece interactions

and rule sets.

These studies underscore the increasing interest in

applying RL to culturally significant and non-traditional

board games, highlighting the novelty and potential impact

of applying similar techniques to Khmer Chess.

2. OVERVIEW OF KHMER CHESS

Khmer Chess, known locally as Ouk Chatrang [8], is a

traditional Cambodian board game that shares similarities

with international chess but features unique pieces and

movement rules. Played on an 8x8 board, the game includes

pieces such as the Neang (queen), Sdaach (king), Tuk

(rook), Koul (knight), Ou (pawn), and Khon (bishop). Each

piece's movement is distinct from its international

counterpart, offering a unique strategic experience.

2.1. Piece Movement Rules

Each piece has unique movement capabilities that

dictate how it navigates the board [18]. Understanding these

movements is crucial for mastering the game. Here are the

movement rules for each piece:

• Pawn (Neang): Moves one square forward to an empty

square or captures one square diagonally forward. Upon

reaching the eighth rank, it is promoted to a queen.

• Knight (Ses): Moves in an "L" shape (two squares in

one direction and one square perpendicular) and can

jump over other pieces.

• Bishop (Trun): Moves one square diagonally in any

direction.

• Rook (Tuuk): Moves any number of squares

horizontally or vertically, capturing by landing on an

opponent's piece.

• Queen (Neang Kou): Moves one square diagonally.

• King (Sen): Moves one square in any direction, cannot

move into check.

2.2. Special Opening Moves

Khmer Chess features unique opening moves that add

an exciting strategic layer to the beginning of the game.

These special moves are designed to enhance the dynamics

of the early game. Here are the special opening moves:

• King's Jump: The king can jump like a knight to the

second row on its first move, but not if in check or if

blocked by an enemy rook.

 Chan et al./Techno-Science Research Journal V13 (1) (2025) P 75-83

77

Fig. 1. King opening first move

• Queen's Jump: The queen can jump two squares forward

on its first move, without capturing.

Fig. 2. Queen opening first move

2.3. Counting Rules for Draws

To prevent indefinite gameplay, Khmer Chess

incorporates counting rules:

• Board's Honor Counting: Initiated when a player has

three or fewer pieces. Counting starts at 1 with a limit of

64 moves. The chasing player must checkmate within

this limit, or the game is drawn.

• Piece's Honor Counting: Activated when no unpromoted

pawns are left, and a player has only the king. The count

begins with the total number of pieces plus one, and the

limit varies based on the material advantage (e.g., two

rooks: 8 moves; one knight: 64 moves). Once started,

the limit remains fixed regardless of subsequent

captures.

These rules, reflecting the cultural depth and strategic

richness of Khmer Chess, distinguish it from international

chess.

3. METHODOLOGY

3.1. Status of the Khmer Chess

 The status of the chess game that base of Figure 1 [3]

involves a detailed assessment of the current situation and

strategic developments occurring on the chessboard:

• Agent: The entity that learns to play chess through the

principles of reinforcement learning. Its primary goal is

to develop strategies that maximize cumulative rewards

over the course of many games. The agent processes

information from the game environment and makes

decisions based on the current state of the game.

• Action: Involves a variety of potential moves, each of

which must conform to the rules of the game. These

actions can include moving a piece to a legal position,

capturing an opponent's piece, promoting a pawn to a

more powerful piece (such as a queen). Each action the

agent takes is influenced by its evaluation of the current

board state and its strategic objectives.

• State: Representation of the board at any given moment.

It includes the positions and types of all pieces, the

move count, and the player's turn. The state serves as

the primary input to the agent's decision-making

process. Accurately modeling and understanding the

state is crucial, as it affects the agent's ability to predict

the outcomes of its actions and plan strategically.

Figure 3. Reinforcement Learning Framework

• Environment: Encompasses all aspects of the chess

game setup and execution. It includes the initialization

of the board, enforcement of the rules to check for legal

moves, and verification of game over conditions such as

checkmate, stalemate, or draw. The environment is

responsible for providing rewards based on the agent's

actions and the game's outcome, which are essential for

reinforcement learning.

• Reward: Rewards in chess are structured to guide the

agent towards achieving its objectives. Positive rewards

are given for favorable outcomes, such as winning the

game through checkmate or capturing an opponent's

piece. Conversely, negative rewards are assigned for

undesirable actions, such as making illegal moves or

losing pieces.

3.2. Integration of Policy Gradient Methods and

Convolutional Neural Networks

 By combining Policy Gradient methods with

Convolutional Neural Networks (CNN), the AI agent learns

to interpret chessboard states, extract relevant patterns, and

probabilistically predict effective moves, thereby facilitating

strategic decision-making in playing chess. This

combination allows the agent to enhance its policy through

experience and self-play, ultimately aiming for stronger

gameplay and competitive performance.

3.2.1. Convolutional Neural Network

 Chan et al./Techno-Science Research Journal V13 (1) (2025) P 75-83

78

 For this research we use convolutional neural networks-

based from Figure 2 for self-training policy with the

Advanced Policy Network model designed for policy

learning tasks, featuring a series of convolutional, batch

normalization, and fully connected layers, augmented by a

residual block for enhanced feature extraction. The

architecture is structured as follows:

• Convolutional Layers: Four convolutional layers

progressively increase the number of filters (32, 64,

128, 256) with a 3x3 kernel size and padding of 1, each

followed by batch normalization and Leaky ReLU

activation to stabilize training and non-linearity. The use

of convolutional layers for feature extraction [1, 2].

• Residual Block: A residual block with two

convolutional layers (256 filters, 3x3 kernel, padding of

1) and batch normalization layers, enhanced by Leaky

ReLU activation, facilitates better gradient flow and

deeper feature learning by adding the block's input to its

output [7].

• Fully Connected Layers: The output from the residual

block is flattened and passed through a fully connected

layer with 512 neurons and Leaky ReLU activation,

followed by a dropout layer (0.5 probability) to prevent

overfitting [15].

• Output Layer: A final fully connected layer maps to the

output size, with a softmax activation function to

produce a probability distribution over the possible

actions [4].

This architecture is effective for extracting intricate features

from high-dimensional inputs and providing probabilistic

action decisions, making it suitable for reinforcement

learning .

Table 1. Hyperparameter settings

Hyperpara-

meter

Value Explanation

Discount

Factor (γ)

0.9 Chosen to balance between

immediate and future rewards. This

value was selected based on

preliminary tests showing

improved performance in long-

term strategic planning.

Exploration

Rate (ε)

0.2 Set to encourage exploration of

various strategies early in training.

This rate was gradually decreased

as the AI became more confident,

transitioning to exploitation.

Learning

Rate

0.001 Selected from a range of values

tested (0.01 to 0.001) to ensure

stable convergence and minimize

policy loss without causing

oscillations.

Batch Size 128 Chosen to balance computational

efficiency and stability of gradient

updates.

Replay

Buffer Size

10000 Set to store a diverse set of

experiences while managing

memory usage effectively.

The choice of hyperparameters involved several methods:

• Empirical Testing: Initial values were chosen based on

domain knowledge and preliminary testing. These

values were adjusted iteratively based on observed

performance in self-play and evaluation games.

• Grid Search: A grid search was employed to explore

different values for key hyperparameters, such as the

learning rate. This systematic approach helped identify

optimal values by evaluating performance across a

range of settings.

• Manual Adjustment: Parameters like the exploration

rate were adjusted manually to align with observed

changes in the AI's learning behavior, transitioning from

exploration to exploitation as training progressed.

The final set of hyperparameters was refined through

iterative testing and evaluation, focusing on performance

Fig. 4. Convolutional Neural Network Architecture

.

.

.
.

.

.

 Chan et al./Techno-Science Research Journal V13 (1) (2025) P 75-83

79

metrics such as win rate, draw rate, and handling of complex

endgame situations.

3.2.2. Policy Gradient Method

The policy gradient method is a prominent approach in

reinforcement learning (RL) that directly optimizes the

policy by maximizing the expected return. Unlike value-

based methods, which estimate the value function to derive

the policy, policy gradient methods focus on learning a

parameterized policy that dictates the agent's actions in the

environment. This method is particularly useful for problems

where the action space is continuous or where it is more

straightforward to model the policy directly rather than the

value function [10].

• Formulation: Let 𝜋𝜃(𝑎∣𝑠) denote the policy

parameterized by 𝜃, which outputs the probability of

taking action 𝑎 given state 𝑠. The objective is to

maximize the expected return 𝐽(𝜃):

J(θ)=Eπθ[∑T
t=0γtRt] (Eq. 1)

where 𝛾 is the discount factor, and 𝑅𝑡 is the reward at time

step 𝑡.

• Gradient Estimation: The policy gradient theorem

provides a way to compute the gradient of the expected

return with respect to the policy parameters:

∇θJ(θ)=Eπθ[∇θlogπθ(𝑎 ∣s)Qπθ(s, 𝑎)] (Eq. 2)

where 𝑄𝜋𝜃(𝑠,𝑎) is the action-value function under policy 𝜋𝜃.

In practice, the true action-value function is often

approximated by the cumulative rewards observed during

training [11].

• Algorithm: The policy gradient algorithm involves the

following steps:

o Collect Trajectories: Generate multiple episodes

(trajectories) by interacting with the environment

using the current policy 𝜋𝜃. Each trajectory consists of

a sequence of states, actions, and rewards:

𝜏 = {(𝑠0, 𝑎0, 𝑟0), (𝑠1, 𝑎1, 𝑟1), … , (𝑠𝑇, 𝑎𝑇 , 𝑟𝑇)} (Eq. 3)

o Compute Returns: For each trajectory, compute the

cumulative return Rt for each time step t:

𝑅𝑡= ∑T𝑘=𝑡𝛾𝑘−𝑡𝑟𝑘 (Eq. 4)

This cumulative return represents the total discounted

reward from time step 𝑡 to the end of the episode.

o Update Policy Parameters: Use the computed returns

to update the policy parameters 𝜃 via gradient ascent:

𝜃←𝜃+𝛼∇𝜃𝐽(𝜃) (Eq. 5)

where 𝛼 is the learning rate, which controls the step size of

the parameter update. The gradient ∇𝜃𝐽(𝜃) is estimated using

the collected trajectories and the returns, as given by the

policy gradient theorem.

Explanation: The policy gradient method utilizes a set of

core equations to guide policy optimization effectively. Eq.

1 establishes the target function J(θ), representing the

expected cumulative return by summing up discounted

rewards achieved through interaction. To refine this target,

Eq. 2 derives the gradient of J(θ) concerning the policy

parameters θ, which directs the adjustments needed to

improve the policy. The optimization process starts with

gathering trajectories, detailed in Eq. 3, which capture the

detailed flow of states, actions, and rewards. These

trajectories are crucial for calculating the cumulative return,

as shown in Eq. 4. The final step, outlined in Eq. 5, involves

updating the policy parameters iteratively. This process

involves adjusting the parameters in the direction of the

gradient to progressively enhance the policy and maximize

the expected return.

3.2.3. Training Process

The Khmer Chess board state is represented using a

convolutional neural network (CNN. The CNN takes as

input a tensor representation of the board, where different

channels encode the presence and type of pieces for both

players. The network architecture consists of several

convolutional layers with batch normalization and activation

functions, followed by fully connected layers that output the

action probabilities combined with the policy gradient

method to train the policy network, which decides the moves

for Player 1.

To follow step by step on training CNN with Policy

Gradient method on self-play :

• Policy Network: The policy network, a CNN, outputs a

probability distribution over possible moves given the

current board state. The network is trained to maximize

the expected cumulative reward by selecting moves that

lead to favorable outcomes.

• Self-Play for Data Generation: The training data is

generated through self-play, where Player 1 uses the

policy network to select actions, and Player -1 makes

random moves. During self-play, the states, actions, and

rewards are recorded to create a dataset for training.

• Reward Structure: Rewards are assigned based on the

game outcomes and intermediate moves with the

o Win: +10 points

o Capture: +1 point per opponent piece captured

 Chan et al./Techno-Science Research Journal V13 (1) (2025) P 75-83

80

o Illegal Move: -1 point

o No Move: -1 point when no legal moves are available

• Policy Gradient Optimization: The policy gradient

method updates the policy network by optimizing the

policy loss function in Eq. 6. The loss function is

defined as the negative log probability of the selected

actions multiplied by the corresponding rewards:

Policy Loss = −∑(log(π(s, 𝑎))⋅R) (Eq. 6)

The network parameters are adjusted using gradient descent

to minimize the policy loss, thereby improving the policy

over time.

• Replay Buffer: A replay buffer stores the state-action-

reward tuples collected during self-play. The buffer

allows the network to be trained on a diverse set of

experiences, promoting stability and efficiency in

learning with the replay buffer size 1000.

• Batch Training: The policy network is updated in

batches sampled from the replay buffer. Rewards are

normalized to stabilize training, and the loss is

computed for the batch to update the network

parameters.

• Evaluation Metrics: The performance of the policy

network is evaluated based on the number of wins,

losses, draws and the cumulative rewards accumulated

by Player 1 and Player 2(Baseline model).

4. IMPLEMENTATION

4.1. Modeling

4.1.1. Baseline Model

The baseline model serves as a fundamental approach

for simulating game moves when no advanced strategy or

learning mechanism (like the policy network) is employed. It

operates primarily based on random selections from the

available legal moves on the chessboard.

This method is responsible for executing a move on the

board based on randomness when it's the AI's turn to play

with the process of:

• Retrieves all legal moves available for the current player

using.

• If no legal moves are available, it penalizes the current

player by decreasing their reward.

• If legal moves are available, it randomly selects one

move from the list of legal moves.

Strengths of the Baseline Model:

• Simplicity: The baseline model is straightforward,

requiring minimal computational resources and no

complex setup, making it easy to implement and run.

• Speed: Since it relies on random selection, the baseline

model executes moves quickly without the need for

deep calculations or extensive training.

• Benchmarking: It provides a clear benchmark to

evaluate the effectiveness of more sophisticated models.

By comparing the RL model's performance against the

baseline, researchers can quantify improvements and

validate the benefits of advanced strategies.

The baseline model is essential for establishing a reference

point in AI development. It helps identify how much the RL

model improves over a basic, non-strategic approach. By

starting with the baseline, researchers can clearly

demonstrate the advantages of more complex methods, like

policy networks, in enhancing decision-making and game

performance.

4.1.2. Policy Gradient Model

Fig. 5. Self-play Training using Policy Gradient

The policy gradient model depicted in Figure 3 involves

several key stages, structured to optimize decision-making in

a game-playing environment. The process can be divided

into initialization, iterative gameplay, policy updates, and

termination. Below is a detailed breakdown of each step:

• Initialize Game Components: Set up the game

environment, policy network, and relevant parameters to

prepare for training. In Khmer chess, the self-play

mechanism is optimized through dynamic difficulty

adjustment, where the AI progressively challenges itself

 Chan et al./Techno-Science Research Journal V13 (1) (2025) P 75-83

81

to improve learning efficiency; rule-based tweaks,

incorporating specific Khmer chess rules and strategies,

such as special opening moves and unique endgame

conditions; and enhanced exploration, which increases

the exploration rate to ensure diverse move sequences

and strategic variety during training.

• While Game is Running: The model continually makes

decisions based on the current game state by makes a

network move and predicts the probabilities of potential

moves based on the game state. These probabilities are

then normalized to form a valid probability distribution.

A move is selected based on the predicted probabilities.

• Check Legal Move: Ensure the selected move adheres

to the game's rules. If the move is illegal, the model

retries until a valid move is chosen.

• Execute Move, Update Rewards, and Store Move in

Memory: After executing the move, the model updates

the rewards based on the new game state. The executed

move, along with the state and reward, is stored in

memory for future learning.

• Check Game Over Conditions: Evaluate if the game has

ended (win, loss, or draw). If so, proceed to the end

game stage; otherwise, continue making moves.

• End Game and Update Policy: Upon game completion,

update the policy network based on the accumulated

experiences. Adjust the neural network's weights to

maximize the expected reward of policy gradient

methods.

4.2. Verification with Unit Test of Individual Pieces

Unit tests are crucial for verifying that each chess

piece behaves according to its movement rules on an 8x8

chessboard. The Table 1 show board coordinates are defined

as (𝑥, 𝑦), where 𝑥 ranges from 0 to 7 (rows from top to

bottom) and 𝑦 ranges from 0 to 7 (columns from left to

right). Below are the unit tests for each piece, specifying

expected outcomes and conditions:

Table 2. Unit Test of chess pieces

Chess Piece Testing

Moves

Expected

Result

Condition

Bishop (7,2) to (6,3) True Diagonal

move
 (7,2) to (6,2) True Forward move
 (7,2) to (5,4) False Invalid move
King (7,3) to (6,3) True Single-step

vertical move
 (7,3) to (6,2) True Single-step

diagonal

move
 (7,3) to (5,4) False Invalid move
Knight (7,1) to (5,0) True L-shape move

 (7,1) to (6,1) False Invalid move
Pawn (5,0) to (4,0) True Forward move

for player 1
 (5,0) to (3,0) False Invalid double

move
 (2,0) to (3,0) True Forward move

for Player 2
 (2,0) to (4,0) False Invalid double

move
Queen (7,4) to (6,5) True Diagonal

move
 (7,4) to (5,6) False Invalid move

 (7,4) to (4,4) False Invalid move

Rook (7,0) to (6,0) True Vertical move

 (7,0) to (7,1) True Horizontal

move
 (7,0) to (6,1) False Invalid move

These unit tests ensure that each piece's movement adheres

to the established rules of KhmerChess. Each test case

provides a clear validation of the piece's move is legal or

not, contributing to the overall reliability and accuracy of the

chess engine's implementation.

5. RESULTS AND DISCUSSION

Applying Reinforcement Learning (RL) to Khmer chess

involves closely examining how AI agents perform and

behave as they're trained using RL algorithms. The results of

this process depend on various factors, such as how the

training is structured, which algorithm is used, and how

complex the Khmer chess problem is. The main goal is to

teach the AI agent all the rules of the game and help it

become skilled at making the best moves.

To effectively evaluate the performance of these models,

specific metrics are employed, as shown in Table 2:

• Win Rate: This shows how often the AI agent wins

games against other baseline AI opponents.

• Average Game Length: This tells us the average number

of moves it takes for the AI agent to win or lose a game

within 200 moves.

• Time Efficiency: This measures how quickly the AI

agent makes moves during a game, usually in seconds

per move.

These evaluation metrics give us numbers that help us

understand how well the deep learning model trained with

policy gradient methods is performing.

 Chan et al./Techno-Science Research Journal V13 (1) (2025) P 75-83

82

Table 3. Illustrates the results of the gameplay metrics

Games 1-2000 2001-4000

Policy Gradient Win Rate 18% 20%
Baseline Win Rate 17% 18%
Draw Rate 65% 62%
Average Game length 160.56 moves 160.30 moves

The results indicate a gradual improvement in the win

rate as the number of training games increases. The win rate

for the policy gradient method starts at 18% after 1 to 2000

games and rises to 20% by the 4000th game, demonstrating

the positive impact of accumulated experience on the

model's performance. The draw rate shows a slight decrease

from 65% to 62% because the model is progressively

adopting more effective strategies and making more decisive

moves, reducing the number of games that end in a draw as

its gameplay improves with accumulated experience,

indicating a consistent performance in achieving game

outcomes that are neither wins nor losses.

Additionally, the average game length decreases

marginally from 160.56 moves to 160.30 moves, suggesting

a trend towards more intricate gameplay as training

progresses. The move time remains stable at 0.01 seconds,

reflecting the model's consistent computational efficiency

throughout the training process.

6. CONCLUSIONS

In conclusion, this study began by recognizing the

inherent complexities of Khmer chess, characterized by

intricate move dynamics and a vast game tree. Traditional

rule-based systems have significant limitations in addressing

the dynamic and uncertain nature of Khmer chess gameplay,

particularly as positions evolve. The challenges of strategic

long-term planning, adapting to varied playing styles, and

efficiently managing the game tree complexity were pivotal

considerations that spurred the investigation of

reinforcement learning (RL) as a potential solution. The

successful integration of RL in Khmer chess situates this

research at the forefront of innovative AI applications in

strategic board games. The insights gained provide a

foundation for further exploration and refinement of RL

techniques, opening new horizons for the development of

intelligent agents capable of mastering the intricacies of

culturally significant games like Khmer chess. The primary

findings of this research include the identification of the

game's complexity and the limitations of traditional systems,

the successful application of RL, and the establishment of a

foundation for future research. To enhance the AI's

performance, future work will focus on collecting data from

human play and integrating it with reinforcement learning.

This approach aims to help the agent learn all the game rules

and become skilled at making optimal moves. Initially, the

AI will explore the game space randomly, akin to human

players seeking strategic insights. As training progresses, the

AI will become more proficient, relying less on random

moves and more on learned patterns and strategies derived

from human playstyles stored in its neural networks.

Combining RL with insights from human gameplay is

expected to accelerate the AI's learning curve and enable it

to adapt more effectively to varied playing styles. This

hybrid approach is anticipated to result in a more robust and

sophisticated AI, capable of navigating the complexities of

Khmer chess with greater finesse and strategic depth.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

"ImageNet classification with deep convolutional neural

networks," Adv. Neural Inf. Process. Syst., 2012, pp.

1097-1105.

[2] A. Simonyan and A. Zisserman, "Very deep

convolutional networks for large-scale image

recognition," arXiv preprint arXiv, 2014. [Online].

Available: https://arxiv.org/abs/1409.1556. [Accessed:

Sept. 10, 2024].

[3] A. Anwar, "Basic terminologies of reinforcement

learning," Analytics Vidhya. [Online]. Available:

https://medium.com/analytics-vidhya/basic-

terminology-reinforcement-learning-2357fd5f0e51.

[Accessed: Sept. 10, 2024].

[4] C. M. Bishop, Pattern Recognition and Machine

Learning, 1st ed. New York, NY, USA: Springer, 2006.

https://arxiv.org/pdf/2211.05500

[5] D. Silver, T. Hubert, and J. Schrittwieser, "A general

reinforcement learning algorithm that masters chess,

shogi and Go through self-play," arXiv preprint arXiv,

2017. [Online]. Available:

https://arxiv.org/pdf/1712.01815v1. [Accessed: Sept.

10, 2024].

[6] D. Stephens, "Applying Deep Reinforcement Learning

to Finite State Single Player Games," Stanford

University. [Online]. Available:

https://cs229.stanford.edu/proj2019aut/data/assignment_

308832_raw/26641389.pdf. [Accessed: Sept. 10, 2024].

[7] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual

learning for image recognition," in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., Las Vegas, NV, USA,

2016, pp. 770-778.

[8] Ouk Chaktrang Championship, "Counting rule,

strategies, tactics," Pre-SouthEast Asia Game 32nd 2023

in Cambodia. [Online]. Available:

https://docs.google.com/document/d/1adppJ66vonM27

UYwC-KyldXl7oZ_5Pb0/edit. [Accessed: Sept. 10,

2024].

https://arxiv.org/abs/1409.1556
https://medium.com/analytics-vidhya/basic-terminology-reinforcement-learning-2357fd5f0e51
https://medium.com/analytics-vidhya/basic-terminology-reinforcement-learning-2357fd5f0e51
https://arxiv.org/pdf/2211.05500
https://arxiv.org/pdf/1712.01815v1
https://cs229.stanford.edu/proj2019aut/data/assignment_308832_raw/26641389.pdf
https://cs229.stanford.edu/proj2019aut/data/assignment_308832_raw/26641389.pdf
https://docs.google.com/document/d/1adppJ66vonM27UYwC-KyldXl7oZ_5Pb0/edit
https://docs.google.com/document/d/1adppJ66vonM27UYwC-KyldXl7oZ_5Pb0/edit

 Chan et al./Techno-Science Research Journal V13 (1) (2025) P 75-83

83

[9] P. Hammersborg and I. Strumke, "Reinforcement

learning in an adaptable chess environment for detecting

human-understandable concepts," arXiv preprint arXiv,

2022. [Online]. Available:

https://arxiv.org/pdf/2211.05500. [Accessed: Sept. 10,

2024].

[10] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y.

Mansour, "Policy gradient methods for reinforcement

learning with function approximation," Adv. Neural Inf.

Process. Syst., 2000, pp. 1057-1063.

[11] R. J. Williams, "Simple statistical gradient-following

algorithms for connectionist reinforcement learning,"

Mach. Learn., vol. 8, no. 3, pp. 229-256, May 1992.

[12] S. Bose, "Training neural networks with policy

gradient," ResearchGate. [Online]. Available:

https://www.researchgate.net/publication/316171194_Tr

aining_Neural_Networks_with_Policy_Gradient.

[Accessed: Sept. 10, 2024].

[13] S. Firoozshahian and E. Mazlumian, "Reinforcement

learning in Mancala: Adapting machine learning

techniques to traditional African games," Int. J. Game

Theory, 2020.

[14] S. Lee, H. Kim, and Y. Takahashi, "Enhancing Shogi AI

with policy gradient and neural MCTS: A reinforcement

learning approach," IEEE Trans. Games, vol. 15, no. 2,

pp. 199-210, Apr. 2023.

[15] S. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,

and R. Salakhutdinov, "Dropout: A simple way to

prevent neural networks from overfitting," J. Mach.

Learn. Res., vol. 15, no. 1, pp. 1929-1958, Jun. 2014.

[16] X. L. Xu and X. Yao, "Reinforcement learning in

Chinese Chess: A study of AI development in culturally

significant games," J. Artif. Intell. Res., 2021.

[17] Y. Zhang, M. Wang, and P. Li, "Deep reinforcement

learning for Hnefatafl: Addressing asymmetric strategy

in historical Viking board games," J. Mach. Learn. Res.,

vol. 23, pp. 1-30, Apr. 2022.

[18] "Ouk Chaktrang" PyChess, 2022. [Online]. Available:

https://www.pychess.org/variants/cambodian.

[Accessed: Sept. 10, 2024].

https://arxiv.org/pdf/2211.05500
https://www.researchgate.net/publication/316171194_Training_Neural_Networks_with_Policy_Gradient
https://www.researchgate.net/publication/316171194_Training_Neural_Networks_with_Policy_Gradient
https://www.pychess.org/variants/cambodian

