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Abstract: Artificial intelligence, fueled by machine learning and deep learning techniques, is revolutionizing various domains. 

Reinforcement learning (RL) stands out as a potent method for training agents to navigate complex environments and make informed 

decisions. Our focus is on applying RL techniques, specifically Convolutional Neural Networks (CNNs) combined with policy gradient 

methods, to enhance the gameplay experience of Khmer chess. Our goal is to surpass the performance of traditional chess engines. 

The system employs deep neural networks to train AI agents, enabling self-play iterations for strategy refinement. Specifically, we 

utilize RL technology to iteratively enhance game strategies based on self-matching results, ultimately improving the system's chess 

proficiency. Our approach entails developing a CNN-based RL system tailored for Khmer chess, encompassing strategies, value 

evaluation mechanisms, and rule adaptations specific to the game. We utilize deep neural networks to facilitate agent training through 

self-play iterations, leveraging RL techniques for continual strategy refinement. To enhance training efficiency, we introduce a 

segmentation method for Khmer chess stages, optimizing the neural network's learning process by mapping game situations to optimal 

actions based on cumulative rewards. Furthermore, we integrate RL principles to guide action selection towards maximizing reward 

values, employing Deep Q-Learning with policy gradient for optimal decision-making. With the experimental validation demonstrates 

the efficacy of our CNN-based RL system in enhancing Khmer chess gameplay. The system exhibits self-improvement, adaptability, 

and human-like gameplay characteristics, enriching player experience and entertainment value. Moreover, the proposed approach 

showcases improved training efficiency compared to conventional RL-based chess systems, highlighting its efficacy and scalability for 

AI-driven game enhancements. 
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1. INTRODUCTION1 

Reinforcement learning (RL) has emerged as a pivotal 

area of focus in the fields of artificial intelligence (AI) and 

machine learning, particularly in the context of chess and 

other complex strategic games. This niche within AI is 

dedicated to creating intelligent agents capable of making 

sequential decisions in ever-changing environments. Unlike 

traditional supervised learning, which relies on labeled data 

to train models, RL agents learn by continuously interacting 

with their surroundings, receiving feedback in the form of 

rewards or penalties. This trial-and-error learning process 

enables the development of sophisticated strategies that 

adapt to the dynamic nature of real-world scenarios. Chess, 
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with its intricate decision-making processes and strategic 

depth, serves as an excellent platform for RL, providing an 

ideal environment for testing and refining RL algorithms. 

The conceptual origins of RL can be traced back to the 

field of behavioral psychology, particularly the exploration 

of learning through trial and error. Pioneering work in this 

area laid the theoretical foundations of RL, which were 

further developed in the mid-20th century with the 

formulation of dynamic programming by Richard Bellman. 

Bellman's work introduced key concepts such as the 

Bellman equation, which remains fundamental to modern 

RL algorithms. However, it wasn't until the advent of 

powerful computational resources and advanced algorithms 

that RL began to garner widespread attention within the 

domain of machine learning. 

Chess, renowned for its strategic depth and historical 

significance, presents a formidable challenge for AI due to 
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its complexity. The game’s vast branching factor, where 

each move leads to a multitude of possible future positions, 

makes it difficult for traditional chess engines to navigate the 

game tree efficiently. While conventional chess engines 

leveraging rule-based systems and minimax algorithms have 

achieved notable success, they encounter significant 

difficulties in complex endgame scenarios where precise 

calculation and long-term planning are essential. 

The primary aim of this research is to pioneer self-play 

mechanisms in Khmer chess, ultimately striving towards the 

attainment of superhuman-level play. By enabling agents to 

learn and refine their strategies through iterative gameplay 

against themselves, the goal is to develop algorithms capable 

of surpassing human performance thresholds in Khmer 

chess. 

Several pivotal works lay the foundation for this study. 

Notably, the AlphaZero algorithm has demonstrated the 

power of general reinforcement learning algorithms in 

mastering complex games like chess, shogi, and Go through 

self-play [5]. AlphaZero achieved superhuman performance 

without game-specific knowledge, utilizing deep neural 

networks and a Monte Carlo tree search (MCTS) instead of 

handcrafted rules.  Another study applied deep 

reinforcement learning to finite state single-player games 

like Solitaire Chess [6], showcasing the efficiency and 

accuracy of RL models in solving puzzles by exploring 

fewer possible moves compared to brute force methods. 

Further advancements in the field include the 

development of adaptable chess environments for detecting 

human-understandable concepts learned by RL agents [9]. 

This research highlights the importance of explainable AI 

and provides tools for research groups with limited 

computational resources. The use of policy gradient methods 

has also been explored for training neural networks [12,10], 

allowing for learning from a system of rewards and 

imposing structural constraints without complex 

architectures. 

Recent studies have expanded the application of RL to 

non-traditional board games and culturally significant 

games, demonstrating the adaptability of RL across diverse 

gaming contexts. For example,[13] explored RL applications 

in Mancala, a traditional African game with deep cultural 

roots, illustrating how RL can adapt to unique strategies and 

rules inherent in non-Western games.[16] focused on RL in 

Xiangqi (Chinese Chess), a game known for its complexity 

and larger board size, revealing how RL can tackle culturally 

specific strategic challenges. Similarly,[17] investigated the 

use of deep RL in Hnefatafl, a historical Viking board game, 

showing that RL could handle asymmetric gameplay and 

ancient strategic elements. Moreover,[14] applied RL to 

Shogi (Japanese Chess), combining Policy Gradient methods 

with neural Monte Carlo Tree Search (MCTS) to enhance 

decision-making in a game with intricate piece interactions 

and rule sets. 

These studies underscore the increasing interest in 

applying RL to culturally significant and non-traditional 

board games, highlighting the novelty and potential impact 

of applying similar techniques to Khmer Chess. 

2. OVERVIEW OF KHMER CHESS 

Khmer Chess, known locally as Ouk Chatrang [8], is a 

traditional Cambodian board game that shares similarities 

with international chess but features unique pieces and 

movement rules. Played on an 8x8 board, the game includes 

pieces such as the Neang (queen), Sdaach (king), Tuk 

(rook), Koul (knight), Ou (pawn), and Khon (bishop). Each 

piece's movement is distinct from its international 

counterpart, offering a unique strategic experience. 

2.1. Piece Movement Rules 

Each piece has unique movement capabilities that 

dictate how it navigates the board [18]. Understanding these 

movements is crucial for mastering the game. Here are the 

movement rules for each piece: 

• Pawn (Neang): Moves one square forward to an empty 

square or captures one square diagonally forward. Upon 

reaching the eighth rank, it is promoted to a queen. 

• Knight (Ses): Moves in an "L" shape (two squares in 

one direction and one square perpendicular) and can 

jump over other pieces. 

• Bishop (Trun): Moves one square diagonally in any 

direction. 

• Rook (Tuuk): Moves any number of squares 

horizontally or vertically, capturing by landing on an 

opponent's piece. 

• Queen (Neang Kou): Moves one square diagonally. 

• King (Sen): Moves one square in any direction, cannot 

move into check. 

2.2. Special Opening Moves 

Khmer Chess features unique opening moves that add 

an exciting strategic layer to the beginning of the game. 

These special moves are designed to enhance the dynamics 

of the early game. Here are the special opening moves: 

• King's Jump: The king can jump like a knight to the 

second row on its first move, but not if in check or if 

blocked by an enemy rook. 
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Fig. 1. King opening first move 

• Queen's Jump: The queen can jump two squares forward 

on its first move, without capturing. 

 
Fig. 2. Queen opening first move 

2.3. Counting Rules for Draws 

To prevent indefinite gameplay, Khmer Chess 

incorporates counting rules: 

• Board's Honor Counting: Initiated when a player has 

three or fewer pieces. Counting starts at 1 with a limit of 

64 moves. The chasing player must checkmate within 

this limit, or the game is drawn. 

• Piece's Honor Counting: Activated when no unpromoted 

pawns are left, and a player has only the king. The count 

begins with the total number of pieces plus one, and the 

limit varies based on the material advantage (e.g., two 

rooks: 8 moves; one knight: 64 moves). Once started, 

the limit remains fixed regardless of subsequent 

captures. 

These rules, reflecting the cultural depth and strategic 

richness of Khmer Chess, distinguish it from international 

chess. 

3. METHODOLOGY 

3.1. Status of the Khmer Chess 

        The status of the chess game that base of Figure 1 [3] 

involves a detailed assessment of the current situation and 

strategic developments occurring on the chessboard: 

• Agent: The entity that learns to play chess through the 

principles of reinforcement learning. Its primary goal is 

to develop strategies that maximize cumulative rewards 

over the course of many games. The agent processes 

information from the game environment and makes 

decisions based on the current state of the game. 

• Action: Involves a variety of potential moves, each of 

which must conform to the rules of the game. These 

actions can include moving a piece to a legal position, 

capturing an opponent's piece, promoting a pawn to a 

more powerful piece (such as a queen). Each action the 

agent takes is influenced by its evaluation of the current 

board state and its strategic objectives. 

• State: Representation of the board at any given moment. 

It includes the positions and types of all pieces, the 

move count, and the player's turn. The state serves as 

the primary input to the agent's decision-making 

process. Accurately modeling and understanding the 

state is crucial, as it affects the agent's ability to predict 

the outcomes of its actions and plan strategically. 

 
Figure 3. Reinforcement Learning Framework 

• Environment: Encompasses all aspects of the chess 

game setup and execution. It includes the initialization 

of the board, enforcement of the rules to check for legal 

moves, and verification of game over conditions such as 

checkmate, stalemate, or draw. The environment is 

responsible for providing rewards based on the agent's 

actions and the game's outcome, which are essential for 

reinforcement learning. 

• Reward: Rewards in chess are structured to guide the 

agent towards achieving its objectives. Positive rewards 

are given for favorable outcomes, such as winning the 

game through checkmate or capturing an opponent's 

piece. Conversely, negative rewards are assigned for 

undesirable actions, such as making illegal moves or 

losing pieces. 

3.2. Integration of Policy Gradient Methods and 

Convolutional Neural Networks 

        By combining Policy Gradient methods with 

Convolutional Neural Networks (CNN), the AI agent learns 

to interpret chessboard states, extract relevant patterns, and 

probabilistically predict effective moves, thereby facilitating 

strategic decision-making in playing chess. This 

combination allows the agent to enhance its policy through 

experience and self-play, ultimately aiming for stronger 

gameplay and competitive performance. 

3.2.1. Convolutional Neural Network 
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        For this research we use convolutional neural networks- 

based from Figure 2 for self-training policy with the 

Advanced Policy Network model designed for policy 

learning tasks, featuring a series of convolutional, batch 

normalization, and fully connected layers, augmented by a 

residual block for enhanced feature extraction. The 

architecture is structured as follows: 

• Convolutional Layers: Four convolutional layers 

progressively increase the number of filters (32, 64, 

128, 256) with a 3x3 kernel size and padding of 1, each 

followed by batch normalization and Leaky ReLU 

activation to stabilize training and non-linearity. The use 

of convolutional layers for feature extraction [1, 2]. 

• Residual Block: A residual block with two 

convolutional layers (256 filters, 3x3 kernel, padding of 

1) and batch normalization layers, enhanced by Leaky 

ReLU activation, facilitates better gradient flow and 

deeper feature learning by adding the block's input to its 

output [7]. 

• Fully Connected Layers: The output from the residual 

block is flattened and passed through a fully connected 

layer with 512 neurons and Leaky ReLU activation, 

followed by a dropout layer (0.5 probability) to prevent 

overfitting [15]. 

• Output Layer: A final fully connected layer maps to the 

output size, with a softmax activation function to 

produce a probability distribution over the possible 

actions [4]. 

This architecture is effective for extracting intricate features 

from high-dimensional inputs and providing probabilistic 

action decisions, making it suitable for reinforcement 

learning . 

Table 1. Hyperparameter settings 

Hyperpara-

meter 

Value Explanation 

Discount 

Factor (γ) 

0.9 Chosen to balance between 

immediate and future rewards. This 

value was selected based on 

preliminary tests showing 

improved performance in long-

term strategic planning. 

Exploration 

Rate (ε) 

0.2 Set to encourage exploration of 

various strategies early in training. 

This rate was gradually decreased 

as the AI became more confident, 

transitioning to exploitation. 

Learning 

Rate 

0.001 Selected from a range of values 

tested (0.01 to 0.001) to ensure 

stable convergence and minimize 

policy loss without causing 

oscillations. 

Batch Size 128 Chosen to balance computational 

efficiency and stability of gradient 

updates. 

Replay 

Buffer Size 

10000 Set to store a diverse set of 

experiences while managing 

memory usage effectively. 

The choice of hyperparameters involved several methods: 

• Empirical Testing: Initial values were chosen based on 

domain knowledge and preliminary testing. These 

values were adjusted iteratively based on observed 

performance in self-play and evaluation games. 

• Grid Search: A grid search was employed to explore 

different values for key hyperparameters, such as the 

learning rate. This systematic approach helped identify 

optimal values by evaluating performance across a 

range of settings. 

• Manual Adjustment: Parameters like the exploration 

rate were adjusted manually to align with observed 

changes in the AI's learning behavior, transitioning from 

exploration to exploitation as training progressed. 

The final set of hyperparameters was refined through 

iterative testing and evaluation, focusing on performance 

Fig. 4. Convolutional Neural Network Architecture 
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metrics such as win rate, draw rate, and handling of complex 

endgame situations. 

 

3.2.2. Policy Gradient Method 

The policy gradient method is a prominent approach in 

reinforcement learning (RL) that directly optimizes the 

policy by maximizing the expected return. Unlike value-

based methods, which estimate the value function to derive 

the policy, policy gradient methods focus on learning a 

parameterized policy that dictates the agent's actions in the 

environment. This method is particularly useful for problems 

where the action space is continuous or where it is more 

straightforward to model the policy directly rather than the 

value function [10]. 

• Formulation: Let 𝜋𝜃(𝑎∣𝑠) denote the policy 

parameterized by 𝜃, which outputs the probability of 

taking action 𝑎 given state 𝑠. The objective is to 

maximize the expected return 𝐽(𝜃): 

J(θ)=Eπθ[ ∑T
t=0γtRt ]   (Eq. 1) 

where 𝛾 is the discount factor, and 𝑅𝑡 is the reward at time 

step 𝑡. 

• Gradient Estimation: The policy gradient theorem 

provides a way to compute the gradient of the expected 

return with respect to the policy parameters: 

∇θJ(θ)=Eπθ[∇θlogπθ(𝑎 ∣s)Qπθ(s, 𝑎)]  (Eq. 2) 

where 𝑄𝜋𝜃(𝑠,𝑎) is the action-value function under policy 𝜋𝜃. 

In practice, the true action-value function is often 

approximated by the cumulative rewards observed during 

training [11]. 

• Algorithm: The policy gradient algorithm involves the 

following steps: 

o Collect Trajectories: Generate multiple episodes 

(trajectories) by interacting with the environment 

using the current policy 𝜋𝜃. Each trajectory consists of 

a sequence of states, actions, and rewards:  

𝜏 = {(𝑠0, 𝑎0, 𝑟0), (𝑠1, 𝑎1, 𝑟1), … , (𝑠𝑇, 𝑎𝑇 , 𝑟𝑇)} (Eq. 3) 

o Compute Returns: For each trajectory, compute the 

cumulative return Rt for each time step t: 

𝑅𝑡= ∑T𝑘=𝑡𝛾𝑘−𝑡𝑟𝑘    (Eq. 4) 

This cumulative return represents the total discounted 

reward from time step 𝑡 to the end of the episode. 

o Update Policy Parameters: Use the computed returns 

to update the policy parameters 𝜃 via gradient ascent: 

𝜃←𝜃+𝛼∇𝜃𝐽(𝜃)    (Eq. 5) 

where 𝛼 is the learning rate, which controls the step size of 

the parameter update. The gradient ∇𝜃𝐽(𝜃) is estimated using 

the collected trajectories and the returns, as given by the 

policy gradient theorem. 

Explanation: The policy gradient method utilizes a set of 

core equations to guide policy optimization effectively. Eq. 

1 establishes the target function J(θ), representing the 

expected cumulative return by summing up discounted 

rewards achieved through interaction. To refine this target, 

Eq. 2 derives the gradient of J(θ) concerning the policy 

parameters θ, which directs the adjustments needed to 

improve the policy. The optimization process starts with 

gathering trajectories, detailed in Eq. 3, which capture the 

detailed flow of states, actions, and rewards. These 

trajectories are crucial for calculating the cumulative return, 

as shown in Eq. 4. The final step, outlined in Eq. 5, involves 

updating the policy parameters iteratively. This process 

involves adjusting the parameters in the direction of the 

gradient to progressively enhance the policy and maximize 

the expected return. 

3.2.3.  Training Process 

The Khmer Chess board state is represented using a 

convolutional neural network (CNN. The CNN takes as 

input a tensor representation of the board, where different 

channels encode the presence and type of pieces for both 

players. The network architecture consists of several 

convolutional layers with batch normalization and activation 

functions, followed by fully connected layers that output the 

action probabilities combined with the policy gradient 

method to train the policy network, which decides the moves 

for Player 1.  

To follow step by step on training CNN with Policy 

Gradient method on self-play : 

• Policy Network: The policy network, a CNN, outputs a 

probability distribution over possible moves given the 

current board state. The network is trained to maximize 

the expected cumulative reward by selecting moves that 

lead to favorable outcomes. 

• Self-Play for Data Generation: The training data is 

generated through self-play, where Player 1 uses the 

policy network to select actions, and Player -1 makes 

random moves. During self-play, the states, actions, and 

rewards are recorded to create a dataset for training. 

• Reward Structure: Rewards are assigned based on the 

game outcomes and intermediate moves with the 

o Win: +10 points 

o Capture: +1 point per opponent piece captured 
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o Illegal Move: -1 point 

o No Move: -1 point when no legal moves are available 

• Policy Gradient Optimization: The policy gradient 

method updates the policy network by optimizing the 

policy loss function in Eq. 6. The loss function is 

defined as the negative log probability of the selected 

actions multiplied by the corresponding rewards: 

Policy Loss = −∑(log(π(s, 𝑎))⋅R)  (Eq. 6) 

The network parameters are adjusted using gradient descent 

to minimize the policy loss, thereby improving the policy 

over time. 

• Replay Buffer: A replay buffer stores the state-action-

reward tuples collected during self-play. The buffer 

allows the network to be trained on a diverse set of 

experiences, promoting stability and efficiency in 

learning with the replay buffer size 1000. 

• Batch Training: The policy network is updated in 

batches sampled from the replay buffer. Rewards are 

normalized to stabilize training, and the loss is 

computed for the batch to update the network 

parameters. 

• Evaluation Metrics: The performance of the policy 

network is evaluated based on the number of wins, 

losses, draws and  the cumulative rewards accumulated 

by Player 1 and Player 2(Baseline model). 

4. IMPLEMENTATION 

4.1. Modeling 

4.1.1. Baseline Model 

The baseline model serves as a fundamental approach 

for simulating game moves when no advanced strategy or 

learning mechanism (like the policy network) is employed. It 

operates primarily based on random selections from the 

available legal moves on the chessboard. 

This method is responsible for executing a move on the 

board based on randomness when it's the AI's turn to play 

with the process of: 

• Retrieves all legal moves available for the current player 

using. 

• If no legal moves are available, it penalizes the current 

player by decreasing their reward. 

• If legal moves are available, it randomly selects one 

move from the list of legal moves. 

Strengths of the Baseline Model: 

• Simplicity: The baseline model is straightforward, 

requiring minimal computational resources and no 

complex setup, making it easy to implement and run. 

• Speed: Since it relies on random selection, the baseline 

model executes moves quickly without the need for 

deep calculations or extensive training. 

• Benchmarking: It provides a clear benchmark to 

evaluate the effectiveness of more sophisticated models. 

By comparing the RL model's performance against the 

baseline, researchers can quantify improvements and 

validate the benefits of advanced strategies. 

The baseline model is essential for establishing a reference 

point in AI development. It helps identify how much the RL 

model improves over a basic, non-strategic approach. By 

starting with the baseline, researchers can clearly 

demonstrate the advantages of more complex methods, like 

policy networks, in enhancing decision-making and game 

performance. 

 

4.1.2. Policy Gradient Model 

 
Fig. 5. Self-play Training using Policy Gradient 

The policy gradient model depicted in Figure 3 involves 

several key stages, structured to optimize decision-making in 

a game-playing environment. The process can be divided 

into initialization, iterative gameplay, policy updates, and 

termination. Below is a detailed breakdown of each step: 

• Initialize Game Components: Set up the game 

environment, policy network, and relevant parameters to 

prepare for training. In Khmer chess, the self-play 

mechanism is optimized through dynamic difficulty 

adjustment, where the AI progressively challenges itself 



                                                                                       Chan et al./Techno-Science Research Journal V13 (1) (2025) P 75-83 
 

81 

 

to improve learning efficiency; rule-based tweaks, 

incorporating specific Khmer chess rules and strategies, 

such as special opening moves and unique endgame 

conditions; and enhanced exploration, which increases 

the exploration rate to ensure diverse move sequences 

and strategic variety during training. 

• While Game is Running: The model continually makes 

decisions based on the current game state by makes a 

network move and predicts the probabilities of potential 

moves based on the game state. These probabilities are 

then normalized to form a valid probability distribution. 

A move is selected based on the predicted probabilities. 

• Check Legal Move: Ensure the selected move adheres 

to the game's rules. If the move is illegal, the model 

retries until a valid move is chosen. 

• Execute Move, Update Rewards, and Store Move in 

Memory: After executing the move, the model updates 

the rewards based on the new game state. The executed 

move, along with the state and reward, is stored in 

memory for future learning. 

• Check Game Over Conditions: Evaluate if the game has 

ended (win, loss, or draw). If so, proceed to the end 

game stage; otherwise, continue making moves. 

• End Game and Update Policy: Upon game completion, 

update the policy network based on the accumulated 

experiences. Adjust the neural network's weights to 

maximize the expected reward of policy gradient 

methods. 

4.2. Verification with Unit Test of Individual Pieces 

Unit tests are crucial for verifying that each chess 

piece behaves according to its movement rules on an 8x8 

chessboard. The Table 1 show board coordinates are defined 

as (𝑥, 𝑦), where 𝑥 ranges from 0 to 7 (rows from top to 

bottom) and 𝑦 ranges from 0 to 7 (columns from left to 

right). Below are the unit tests for each piece, specifying 

expected outcomes and conditions: 

Table 2. Unit Test of chess pieces 

Chess Piece Testing 

Moves 

Expected 

Result 

Condition 

Bishop (7,2) to (6,3) True Diagonal 

move 
 (7,2) to (6,2) True Forward move 
 (7,2) to (5,4) False Invalid move 
King (7,3) to (6,3) True Single-step 

vertical move 
 (7,3) to (6,2) True Single-step 

diagonal 

move 
 (7,3) to (5,4) False Invalid move 
Knight (7,1) to (5,0) True L-shape move 

 (7,1) to (6,1) False Invalid move 
Pawn (5,0) to (4,0) True Forward move 

for player 1 
 (5,0) to (3,0) False Invalid double 

move 
 (2,0) to (3,0) True Forward move 

for Player 2 
 (2,0) to (4,0) False Invalid double 

move 
Queen (7,4) to (6,5) True Diagonal 

move 
 (7,4) to (5,6) False Invalid move 

 (7,4) to (4,4) False Invalid move 

Rook (7,0) to (6,0) True Vertical move 

 (7,0) to (7,1) True Horizontal 

move 
 (7,0) to (6,1) False Invalid move 

These unit tests ensure that each piece's movement adheres 

to the established rules of KhmerChess. Each test case 

provides a clear validation of the piece's move is legal or 

not, contributing to the overall reliability and accuracy of the 

chess engine's implementation. 

5. RESULTS AND DISCUSSION 

Applying Reinforcement Learning (RL) to Khmer chess 

involves closely examining how AI agents perform and 

behave as they're trained using RL algorithms. The results of 

this process depend on various factors, such as how the 

training is structured, which algorithm is used, and how 

complex the Khmer chess problem is. The main goal is to 

teach the AI agent all the rules of the game and help it 

become skilled at making the best moves. 

To effectively evaluate the performance of these models, 

specific metrics are employed, as shown in Table 2: 

• Win Rate: This shows how often the AI agent wins 

games against other baseline AI opponents. 

• Average Game Length: This tells us the average number 

of moves it takes for the AI agent to win or lose a game 

within 200 moves. 

• Time Efficiency: This measures how quickly the AI 

agent makes moves during a game, usually in seconds 

per move. 

These evaluation metrics give us numbers that help us 

understand how well the deep learning model trained with 

policy gradient methods is performing. 
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Table 3. Illustrates the results of the gameplay metrics 

Games 1-2000 2001-4000 

Policy Gradient Win Rate 18% 20% 
Baseline Win Rate 17% 18% 
Draw Rate 65% 62% 
Average Game length 160.56 moves 160.30 moves 

The results indicate a gradual improvement in the win 

rate as the number of training games increases. The win rate 

for the policy gradient method starts at 18% after 1 to 2000 

games and rises to 20% by the 4000th game, demonstrating 

the positive impact of accumulated experience on the 

model's performance. The draw rate shows a slight decrease 

from 65% to 62% because the model is progressively 

adopting more effective strategies and making more decisive 

moves, reducing the number of games that end in a draw as 

its gameplay improves with accumulated experience, 

indicating a consistent performance in achieving game 

outcomes that are neither wins nor losses. 

Additionally, the average game length decreases 

marginally from 160.56 moves to 160.30 moves, suggesting 

a trend towards more intricate gameplay as training 

progresses. The move time remains stable at 0.01 seconds, 

reflecting the model's consistent computational efficiency 

throughout the training process. 

6. CONCLUSIONS   

In conclusion, this study began by recognizing the 

inherent complexities of Khmer chess, characterized by 

intricate move dynamics and a vast game tree. Traditional 

rule-based systems have significant limitations in addressing 

the dynamic and uncertain nature of Khmer chess gameplay, 

particularly as positions evolve. The challenges of strategic 

long-term planning, adapting to varied playing styles, and 

efficiently managing the game tree complexity were pivotal 

considerations that spurred the investigation of 

reinforcement learning (RL) as a potential solution. The 

successful integration of RL in Khmer chess situates this 

research at the forefront of innovative AI applications in 

strategic board games. The insights gained provide a 

foundation for further exploration and refinement of RL 

techniques, opening new horizons for the development of 

intelligent agents capable of mastering the intricacies of 

culturally significant games like Khmer chess. The primary 

findings of this research include the identification of the 

game's complexity and the limitations of traditional systems, 

the successful application of RL, and the establishment of a 

foundation for future research. To enhance the AI's 

performance, future work will focus on collecting data from 

human play and integrating it with reinforcement learning. 

This approach aims to help the agent learn all the game rules 

and become skilled at making optimal moves. Initially, the 

AI will explore the game space randomly, akin to human 

players seeking strategic insights. As training progresses, the 

AI will become more proficient, relying less on random 

moves and more on learned patterns and strategies derived 

from human playstyles stored in its neural networks. 

Combining RL with insights from human gameplay is 

expected to accelerate the AI's learning curve and enable it 

to adapt more effectively to varied playing styles. This 

hybrid approach is anticipated to result in a more robust and 

sophisticated AI, capable of navigating the complexities of 

Khmer chess with greater finesse and strategic depth. 
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